

Lante Case Study.

SpreeRide, Lante, and Agile Methods
Business and Technology in Collaboration
A Successful Experience

Agile Methods is a software development approach that depends on a close collaboration
between technology and business teams. This method creates software solutions that are
inherently adaptable, dependable, and much less costly than solutions developed using
the traditional “waterfall” approach. It is an emerging practice that shows great promise for
eliminating problems such as cost overruns or unmet deadlines that are all too common
using the traditional approach. This case study describes how, despite fluctuating
functional requirements, Lante successfully used Agile Methods to implement a software
solution for SpreeRide Corporation. This solution is in production today as their patent
pending MC2, a comprehensive, accountable, integrated marketing system.

Agile Methods vs. Traditional Development Methodologies

Although the development method presented here might be considered unusual or even
extreme, today’s business environment is evolving in a direction that demands a very
adaptive kind of software development practice. Traditional development methods often
create antagonism between project stakeholders due to a lack of communication. Agile
Methods fosters a collaborative rather than combative atmosphere because the
stakeholders must meet face-to-face each week to discuss the project. Because traditional
methods usually insulate the client from development activity, an additional effort to
manage customer expectations is usually required. With Agile Methods, expectation
management is a built-in feature, and the client is able to see business value implemented
on a daily basis. With the traditional process, functional requirements are fixed at the end
of the requirements phase and remain so for the course of the project. Any requirement
changes usually involve costly and time-consuming revisions to the code, forcing the
whole project to go off schedule. With Agile Methods, requirements are fixed for a week’s
time, allowing the project to change at the same velocity as the business. Traditional
development methods do not usually produce a functioning system until the very end of
the development phase, and client support for a project often becomes stale, especially
after a great deal of money has been spent with nothing concrete to show for the
investment. With Agile Methods, the growing functionality of the system is demonstrated
every two weeks, thereby justifying continued support for the project.

Because the Lante technology team rigorously applied Agile Methods, SpreeRide was
able to change objectives in the middle of development to meet new business demands
without seriously disrupting the progress of the developers.

The Need for a New Approach

SpreeRide developed a well-founded business plan and identified all of the functional
requirements necessary for a system to implement that plan. However, given the volatile

 2

nature of the current business environment, SpeeRide needed to be able to change the
requirements of the system quickly to meet evolving market opportunities. Knowing that
changing business requirements did not work well with the traditional waterfall cycle of
development, SpreeRide engaged Lante to develop the system using Agile Methods.

A Different Way of Working

In accord with Agile Methods practice, the business team headed by the CTO met with
Lante’s technology team at the beginning of each week for “planning game” sessions to
determine the work that needed to be done for the week. Initially, the system functions had
been prioritized according to current business needs using MOSCOW lists (an acronym
for Must Have, Should Have, Could Have, and Won’t Have). Under the terms of the
engagement, only the functions in the “Must Have” list were to be implemented during
course of the project. It was understood that once the Must Have functions were working,
the client would reprioritize the remaining functions or request new functions during the
weekly planning game.

At the conclusion of the planning game, a pair of Lante developers would take
responsibility for implementing a function using a “test first” approach. A test that described
a specific behavior would be composed and then code would be written to implement that
behavior in the program. This method of incrementally writing tests and code through a
series of iterations provided the developers with a reliable way to consistently produce
quality work.

Demonstrable Results

One important objective of Agile Methods development is to always work towards
providing demonstrable results. Although at first a fair amount of “backstage” work—such
as setting up the development environment—needed to be accomplished, at least one
visible function was implemented each week so that progress could be demonstrated to
the client. As each week progressed, fewer backstage efforts were required and more
attention could be given to developing visible functionality.

The use of Agile Methods also ensured consistent progress for Lante because pair
programming was required. If anyone were unable to come to work, he or she could do so
without restraining the progress toward implementing a function because the other partner
would team with another developer to continue the work. Pair programming also allowed
for mentorship and promoted high team morale throughout the project.

The Fifth Week Challenge

Five weeks into development, SpreeRide’s objective changed from creating a
demonstration system for a specific client to creating a generic version that could be
adapted for immediate demonstration on many different clients. This required a change in
the look and feel of the demo, a change in workflow, and a change in the deployed
solution. In response, Lante developers repurposed the existing code to meet the new
objective and created an impressive working demo that SpreeRide was able to show to
prospective clients without a serious impact on the development timeline.

A Change in Direction

The first phase of the project delivered within 1% of budget, and because Agile Methods
had been proven effective, a new statement of work was created to continue development

 3

with this approach. The next goal was to develop a self-contained sales tool that would
run on a laptop computer. This was a completely fixed cost, fixed time frame, optional
scope engagement designed to meet SpreeRide’s next goal by a specific date. This
change in direction did not hinder the development team because they were only required
to focus on the new set of functions each week.

A Change in Leadership

SpreeRide’s CTO was the original leader of the business team, acting as both the
technical point person for SpreeRide and the client representative. Towards the end of the
second phase of the project, the CTO turned his role over to SpreeRide’s COO. This
change in leadership also meant a shift in business priorities. The impact to the
development team was minimized by the weekly planning game sessions that gave the
team an opportunity to provide feedback to the COO about the impact the new priorities
would have on the system. The client continued to enjoy a clear view of the development
activity via stand-up meetings each morning and bi-weekly steering committee meetings
with other executives. The client’s expectations were managed on a daily—almost
hourly—basis because everybody was aware of the actual development progress.

Conclusion

The diagram below provides a vivid picture of Agile Methods in contrast with the traditional
waterfall approach.

End of Contract

2/26
Feb 20, 2001 Jun 20, 2001

3/5 3/12 3/19 3/26 4/2 4/9 4/16 4/23 4/30 5/7 5/14 5/21 5/28 6/4 6/11 6/18

XP

2/20 - 4/21
Phase I

4/20 - 6/20
Phase II

Start Phase I Radical re-
prioritization of
requirements

Start Phase II Customer
Change

Customer
Change

Transition

Hypothosized
Waterfall

Plan

Process

...

Requirements
gathering

Requirements
signoff

Requirements
complete

Signoff

Signoff

Requirements
Design
Test
Implement
Refactor

Iteration Complete
(Running System)

Design Complete

Design Signoff

Design Implementation

Code Complete

Testing

Final Customer
Signoff

Requirements
gathering

Requirements
signoff

Requirements
complete

Signoff

Design Complete

Change
Order
Signoff

Design
Requirements
Gathering DesignHypothosized

Waterfall
Reality

Change Order
Contract
Renegotiation

Requirements
complete

Requirements
signoff

4/20/01

4/20/01

Business
Events

 4

The traditional waterfall approach to development requires a team structure that fluctuates
per phase, is more hierarchical, and requires more management due to the layering and
coordination of various competencies. In a traditional approach, the project moves through
a requirements phase, followed by a design, an implementation, and finally a testing
phase.

In a waterfall approach, the requirements team attempts to identify the functional
requirements for the system within the first two to three weeks of a new project. The client
is then asked to confirm that all requirements have been gathered. Because the
requirements documentation is often long and very detailed, the client might blindly
approve the requirements, potentially jeopardizing the project, or might take an inordinate
amount of time sifting through the details, effectively stalling the project. Once
requirements have been approved, the design process can commence. Substantial
changes to the functional requirements during the design phase have a disruptive effect
on the project, triggering a change request process that forces everyone to start all over
again.

For example, had SpreeRide’s change in objectives occurred during the design phase, a
change order calling for new requirements and new implementation timelines would have
been required, a process taking several days to weeks. If SpreeRide had been using the
traditional development method, the project would most likely have ended prematurely
because a working demonstration for prospective clients could not have been constructed
in time. Essentially, SpreeRide would have walked away carrying no more than a stack of
requirements documentation and any design documentation completed up to that point.

The successful use of Agile Methods in Lante’s engagement with SpreeRide illustrates
how a development team can produce a quality solution while continuing to be responsive
to changes in functional requirements. This new way of building systems provides
functionality each step of the way, allowing businesses to gather real-time feedback and to
factor that feedback into the development cycle on a weekly basis.

