Case Study

SpreeRide, Lante and Extreme Programming

Introduction

Extreme Programming (XP) is a culture that promotes collaboration between
technology and business teams. In this case study we will describe how XP was used to
implement a system with fluctuating business requirements for SpreeRide Corporation.
The XP process will then be compared to a hypothetical case in which a traditional
software development approach is used. The timelines are illustrated in the included
diagram and discussed in the narrative.

The Business Story

SpreeRide developed a well-founded business plan and decided to proceed with
development of a system to implement that plan. SpreeRide was interested in
approaching the development of the system from a new perspective, realizing that the
traditional waterfall cycle was inadequate in its inflexibility, and that a dynamic process
suited to the current business environment was needed.

SpreeRide and Lante engaged with a “test first” statement of work, consisting of
minimum functionalities structured in the form of tests. This set of tests was structured as
a MOSCOW list, (an acronym for Must Have, Should Have, Could Have, and Won’t
Have), and this list was ordered according to business priorities at the time.

The only guarantee from a contractual perspective was that the items under the
Must Have column were to be implemented during course of the project. The project’s
initial release plan consisted of the “Must Have” items. It was commonly understood that
once the “Must Haves” were implemented, the client would reprioritize remaining
business tasks or present new tasks during the weekly planning game (attended by
members of both business and development teams).

A Change in Client Funding

At the fifth week of development SpreeRide encountered a funding issue with one
of their venture capitalists. What this meant for SpreeRide was that they could cease
development and still have roughly sixty percent of demonstrable functionality.
SpreeRide arranged a demonstration of the running system to their venture capitalists.
The VC’s were so impressed with the amount of functionality developed that SpreeRide
received additional funding and within a week was back on track. The additional funding
allowed SpreeRide to continue development with a new fixed-price/fixed-time/variable-
scope statement of work based on SpreeRide’s satisfaction and trust of the Lante team.

A Change in Direction

The new statement of work shifted focus from a client-specific system to a self-
contained sales-tool to be run on a laptop computer. This change in scope did not hinder
the development team, as they were only required to focus on a new set of stories.

A Change in Priorities

SpreeRide’s CTO was an integral member of the development team acting as both
technical point person for SpreeRide as well as the customer representative. Towards the
end of the second phase of the project, the CTO transitioned the story ownership to
SpreeRide’s COO. This change in leadership meant that business priorities would be
shifting, a condition that was par for the entire course of the project anyway. The impact
to the team was further minimized by the nature of the weekly iteration, where the client
specified the most important functionalities to be developed. Due to the high degree of
discipline in applying the XP process, everyone’s expectations were managed on a daily,
almost hourly basis.

XP Development on the SpreeRide Project

Project Management

Each development day begins with an all-hands team/customer standup meeting.
This provides unfiltered feedback to the client, and a transparent view into such things as
team dynamics and state of the system.

Each development week began with a planning game. The planning game defines
business requirements, technical tasks, and a test suite to define how the team will know
that business requirements have been satisfied. During the planning game developers
accept responsibility for completed specified tasks by estimating and signing up for each
task.

Evaluating the Unknown

Assumptions regarding technical requirements are validated by “spikes” (a time-
boxed investigation). If a requirement cannot be estimated with a high level of confidence
by the team, then a spike is performed. For example, a spike might consist of evaluating
competing COTS packages.

Team Structure

From top to bottom, this hierarchy consists of the Steering Committee, and the XP
team. The Committee consists of executive level personnel. The XP team consists of the
Coach (providing XP process guidance and enforcement), the client-customer (provides
business input and decision making), and the development team.

Team Day

A typical day from the perspective of the XP team starts with the daily standup
meeting where outstanding issues and questions are resolved. Then development begins
in earnest with members pairing up and selecting tasks, writing tests, and developing
code. Code is integrated periodically throughout the day where all regression tests are
run.

Team Week
Every two weeks, in preparation for Steering Committee meetings, the team
would develop a demonstration of the current system to date.

Team Impact Based on Business Events

Events, which might adversely affect the team such as a hiccup in funding or a
change in managerial direction, have minimal impact on an XP team. In the case of a
project coming to a grinding halt midway through a development effort, the client walks
away with one hundred percent implementation of the most important features, while the
development team remains satisfied with their craftsmanship in that they delivered a
high-quality product.

A Traditional Development Methodology

Typically, a traditional waterfall approach would demand a team structure that
fluctuates per phase, is more hierarchical, and requires more management due to the
layering and coordination of various competencies. A project would move through a
requirements phase, followed by design, implementation, and finally testing phases.

In our hypothetical scenario, the requirements team would attempt to gather all
requirement details within two to three weeks of starting the project. The client would
then be asked to validate or approve that all requirements had been gathered. The client
might blindly approve that the requirements are satisfied, thereby potentially jeopardizing
the foundation of the project, or may take an inordinate amount of time sifting through
details, effectively stalling the project. Once requirements have been approved, the design
process can commence. Substantial changes to requirements has a domino effect on the
project, triggering a change request process and cutting into the time budgeted for design.
For example, had SpreeRide’s funding event occurred during the design phase, change
orders would have been filed and timelines reestablished, a process taking several days to
weeks. At this point in our story, the project would most likely have ended, because
SpreeRide would have been unable to demonstrate a working system to their financiers.
Emerging from this train wreck, SpreeRide would walk away carrying no more than a
stack of requirements documentation and any design documentation completed up to that
point.

2020 - 41 4720 - 5520

Phase | Phase Il
A ..
Lal e T
L H H
] | | I | | I | [| I I | | I | [
2026 34 312 319 3426 42 I/ 449 416 | 4523 4430 87 514 221 528 B/4 611 BAG
Feb 20, 2001 _;\O"T. Jun 20, 2001
AR
Eusiness Stan Phase | Funding issues [Funding resolved | [Start Fhasell] Custormner Customer
Events and Client Change Chan_ge
dropout Transition
Process
)
tterstion Complete
[Running System)
4i20601
Hypothosized R:&';i:;mms Design Implemertation Testing
\Waterfall g 9, N N N .
Plan \
Signoff Requirements Design Signoff .
1gno Siglq‘ltlff Cocle Complete Final Customer
Signott
Design Complete
Requirements
cotmplete
4/20i01
Change Order
Reaui it Contract Requiremerts
Hypaothosized g:ﬁﬁlg:;r;a € Design Renegotistion . Gathering Design
Waterfall + + * -
Reali
ty Change
Reguiremerts Order Requi
i i quirements Endl of Cortract
Signoff signoff Signioff signatt
Req“‘I’;mE”‘S Design Complete Reguirements
complete complete

Conclusion

Although the business scenario presented here might be considered unusual or extreme,
today’s business environment is nevertheless always changing, and demands a software
development practice that changes with it. One of the reasons XP succeeds is that it
fosters a collaborative rather than combative dynamic between organizations. In XP,
expectation management is a built in feature, while traditional techniques require a
dedicated effort to manage customer expectations. On the SpreeRide project, the client
saw business value implemented on a daily basis. Had the project used the traditional
approach, SpreeRide would have held a fixed set of expectations of a completed system
that would have been shattered with the loss of funding. With XP, the team builds
business value every day, thereby justifying their existence. XP hands over the reigns to
the client every week, allowing them to re-scope and change requirements. To build
anything, requirements must remain fixed for a certain amount of time. With the waterfall
process requirements are fixed at the end of the requirements phase, remaining so during
the course of the project pending no further changes. In XP, requirements are fixed for a
week’s time, allowing the project to move at the same velocity as the business. Due to a
disciplined team rigorously applying the practices of XP, SpreeRide was able to weather
a storm and successfully develop their system.

